Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-14x+44=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 44}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 44}}{2}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-176}}{2}
Whakareatia -4 ki te 44.
x=\frac{-\left(-14\right)±\sqrt{20}}{2}
Tāpiri 196 ki te -176.
x=\frac{-\left(-14\right)±2\sqrt{5}}{2}
Tuhia te pūtakerua o te 20.
x=\frac{14±2\sqrt{5}}{2}
Ko te tauaro o -14 ko 14.
x=\frac{2\sqrt{5}+14}{2}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{5}}{2} ina he tāpiri te ±. Tāpiri 14 ki te 2\sqrt{5}.
x=\sqrt{5}+7
Whakawehe 14+2\sqrt{5} ki te 2.
x=\frac{14-2\sqrt{5}}{2}
Nā, me whakaoti te whārite x=\frac{14±2\sqrt{5}}{2} ina he tango te ±. Tango 2\sqrt{5} mai i 14.
x=7-\sqrt{5}
Whakawehe 14-2\sqrt{5} ki te 2.
x^{2}-14x+44=\left(x-\left(\sqrt{5}+7\right)\right)\left(x-\left(7-\sqrt{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7+\sqrt{5} mō te x_{1} me te 7-\sqrt{5} mō te x_{2}.