Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+12x+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 6}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{144-4\times 6}}{2}
Pūrua 12.
x=\frac{-12±\sqrt{144-24}}{2}
Whakareatia -4 ki te 6.
x=\frac{-12±\sqrt{120}}{2}
Tāpiri 144 ki te -24.
x=\frac{-12±2\sqrt{30}}{2}
Tuhia te pūtakerua o te 120.
x=\frac{2\sqrt{30}-12}{2}
Nā, me whakaoti te whārite x=\frac{-12±2\sqrt{30}}{2} ina he tāpiri te ±. Tāpiri -12 ki te 2\sqrt{30}.
x=\sqrt{30}-6
Whakawehe -12+2\sqrt{30} ki te 2.
x=\frac{-2\sqrt{30}-12}{2}
Nā, me whakaoti te whārite x=\frac{-12±2\sqrt{30}}{2} ina he tango te ±. Tango 2\sqrt{30} mai i -12.
x=-\sqrt{30}-6
Whakawehe -12-2\sqrt{30} ki te 2.
x^{2}+12x+6=\left(x-\left(\sqrt{30}-6\right)\right)\left(x-\left(-\sqrt{30}-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -6+\sqrt{30} mō te x_{1} me te -6-\sqrt{30} mō te x_{2}.