Tīpoka ki ngā ihirangi matua
Whakaoti mō f (complex solution)
Tick mark Image
Whakaoti mō f
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

xf=\tan(x)-\cot(x)+x^{2}
He hanga arowhānui tō te whārite.
\frac{xf}{x}=\frac{\frac{\frac{1}{\cos(x)}-2\cos(x)}{\sin(x)}+x^{2}}{x}
Whakawehea ngā taha e rua ki te x.
f=\frac{\frac{\frac{1}{\cos(x)}-2\cos(x)}{\sin(x)}+x^{2}}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
f=\frac{\frac{1}{\cos(x)}-2\cos(x)}{x\sin(x)}+x
Whakawehe x^{2}+\frac{\frac{1}{\cos(x)}-2\cos(x)}{\sin(x)} ki te x.
xf=\tan(x)-\cot(x)+x^{2}
He hanga arowhānui tō te whārite.
\frac{xf}{x}=\frac{-2\cot(2x)+x^{2}}{x}
Whakawehea ngā taha e rua ki te x.
f=\frac{-2\cot(2x)+x^{2}}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
f=-\frac{2\cot(2x)}{x}+x
Whakawehe x^{2}-2\cot(2x) ki te x.