Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7x^{2}+x-1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 7\left(-1\right)}}{2\times 7}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1-4\times 7\left(-1\right)}}{2\times 7}
Pūrua 1.
x=\frac{-1±\sqrt{1-28\left(-1\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-1±\sqrt{1+28}}{2\times 7}
Whakareatia -28 ki te -1.
x=\frac{-1±\sqrt{29}}{2\times 7}
Tāpiri 1 ki te 28.
x=\frac{-1±\sqrt{29}}{14}
Whakareatia 2 ki te 7.
x=\frac{\sqrt{29}-1}{14}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{29}}{14} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{29}.
x=\frac{-\sqrt{29}-1}{14}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{29}}{14} ina he tango te ±. Tango \sqrt{29} mai i -1.
7x^{2}+x-1=7\left(x-\frac{\sqrt{29}-1}{14}\right)\left(x-\frac{-\sqrt{29}-1}{14}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-1+\sqrt{29}}{14} mō te x_{1} me te \frac{-1-\sqrt{29}}{14} mō te x_{2}.