Whakaoti mō g
g=\frac{x-2}{x}
x\neq 0
Whakaoti mō x
x=\frac{2}{1-g}
g\neq 1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3gx=3x+6-6x
Tangohia te 6x mai i ngā taha e rua.
-3gx=-3x+6
Pahekotia te 3x me -6x, ka -3x.
\left(-3x\right)g=6-3x
He hanga arowhānui tō te whārite.
\frac{\left(-3x\right)g}{-3x}=\frac{6-3x}{-3x}
Whakawehea ngā taha e rua ki te -3x.
g=\frac{6-3x}{-3x}
Mā te whakawehe ki te -3x ka wetekia te whakareanga ki te -3x.
g=1-\frac{2}{x}
Whakawehe -3x+6 ki te -3x.
6x-3gx-3x=6
Tangohia te 3x mai i ngā taha e rua.
3x-3gx=6
Pahekotia te 6x me -3x, ka 3x.
\left(3-3g\right)x=6
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(3-3g\right)x}{3-3g}=\frac{6}{3-3g}
Whakawehea ngā taha e rua ki te -3g+3.
x=\frac{6}{3-3g}
Mā te whakawehe ki te -3g+3 ka wetekia te whakareanga ki te -3g+3.
x=\frac{2}{1-g}
Whakawehe 6 ki te -3g+3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}