Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(3x-x^{2}+10\right)
Tauwehea te 2.
-x^{2}+3x+10
Whakaarohia te 3x-x^{2}+10. Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=-10=-10
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,10 -2,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
-1+10=9 -2+5=3
Tātaihia te tapeke mō ia takirua.
a=5 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(-x^{2}+5x\right)+\left(-2x+10\right)
Tuhia anō te -x^{2}+3x+10 hei \left(-x^{2}+5x\right)+\left(-2x+10\right).
-x\left(x-5\right)-2\left(x-5\right)
Tauwehea te -x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-5\right)\left(-x-2\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(x-5\right)\left(-x-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-2x^{2}+6x+20=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)\times 20}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{36-4\left(-2\right)\times 20}}{2\left(-2\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+8\times 20}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-6±\sqrt{36+160}}{2\left(-2\right)}
Whakareatia 8 ki te 20.
x=\frac{-6±\sqrt{196}}{2\left(-2\right)}
Tāpiri 36 ki te 160.
x=\frac{-6±14}{2\left(-2\right)}
Tuhia te pūtakerua o te 196.
x=\frac{-6±14}{-4}
Whakareatia 2 ki te -2.
x=\frac{8}{-4}
Nā, me whakaoti te whārite x=\frac{-6±14}{-4} ina he tāpiri te ±. Tāpiri -6 ki te 14.
x=-2
Whakawehe 8 ki te -4.
x=-\frac{20}{-4}
Nā, me whakaoti te whārite x=\frac{-6±14}{-4} ina he tango te ±. Tango 14 mai i -6.
x=5
Whakawehe -20 ki te -4.
-2x^{2}+6x+20=-2\left(x-\left(-2\right)\right)\left(x-5\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2 mō te x_{1} me te 5 mō te x_{2}.
-2x^{2}+6x+20=-2\left(x+2\right)\left(x-5\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.