Whakaoti mō f, x
x=2
f = \frac{73}{2} = 36\frac{1}{2} = 36.5
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
f ( x ) = 5 x ^ { 3 } + 4 x ^ { 2 } + 8 x + 1 \text { when } x = 2
Tohaina
Kua tāruatia ki te papatopenga
f\times 2=5\times 2^{3}+4\times 2^{2}+8\times 2+1
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
f\times 2=5\times 8+4\times 2^{2}+8\times 2+1
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
f\times 2=40+4\times 2^{2}+8\times 2+1
Whakareatia te 5 ki te 8, ka 40.
f\times 2=40+4\times 4+8\times 2+1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
f\times 2=40+16+8\times 2+1
Whakareatia te 4 ki te 4, ka 16.
f\times 2=56+8\times 2+1
Tāpirihia te 40 ki te 16, ka 56.
f\times 2=56+16+1
Whakareatia te 8 ki te 2, ka 16.
f\times 2=72+1
Tāpirihia te 56 ki te 16, ka 72.
f\times 2=73
Tāpirihia te 72 ki te 1, ka 73.
f=\frac{73}{2}
Whakawehea ngā taha e rua ki te 2.
f=\frac{73}{2} x=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}