Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}-17x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 4\times 3}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 4\times 3}}{2\times 4}
Pūrua -17.
x=\frac{-\left(-17\right)±\sqrt{289-16\times 3}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-17\right)±\sqrt{289-48}}{2\times 4}
Whakareatia -16 ki te 3.
x=\frac{-\left(-17\right)±\sqrt{241}}{2\times 4}
Tāpiri 289 ki te -48.
x=\frac{17±\sqrt{241}}{2\times 4}
Ko te tauaro o -17 ko 17.
x=\frac{17±\sqrt{241}}{8}
Whakareatia 2 ki te 4.
x=\frac{\sqrt{241}+17}{8}
Nā, me whakaoti te whārite x=\frac{17±\sqrt{241}}{8} ina he tāpiri te ±. Tāpiri 17 ki te \sqrt{241}.
x=\frac{17-\sqrt{241}}{8}
Nā, me whakaoti te whārite x=\frac{17±\sqrt{241}}{8} ina he tango te ±. Tango \sqrt{241} mai i 17.
4x^{2}-17x+3=4\left(x-\frac{\sqrt{241}+17}{8}\right)\left(x-\frac{17-\sqrt{241}}{8}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{17+\sqrt{241}}{8} mō te x_{1} me te \frac{17-\sqrt{241}}{8} mō te x_{2}.