Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-15x+9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\times 9}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\times 9}}{2\times 3}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\times 9}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-15\right)±\sqrt{225-108}}{2\times 3}
Whakareatia -12 ki te 9.
x=\frac{-\left(-15\right)±\sqrt{117}}{2\times 3}
Tāpiri 225 ki te -108.
x=\frac{-\left(-15\right)±3\sqrt{13}}{2\times 3}
Tuhia te pūtakerua o te 117.
x=\frac{15±3\sqrt{13}}{2\times 3}
Ko te tauaro o -15 ko 15.
x=\frac{15±3\sqrt{13}}{6}
Whakareatia 2 ki te 3.
x=\frac{3\sqrt{13}+15}{6}
Nā, me whakaoti te whārite x=\frac{15±3\sqrt{13}}{6} ina he tāpiri te ±. Tāpiri 15 ki te 3\sqrt{13}.
x=\frac{\sqrt{13}+5}{2}
Whakawehe 15+3\sqrt{13} ki te 6.
x=\frac{15-3\sqrt{13}}{6}
Nā, me whakaoti te whārite x=\frac{15±3\sqrt{13}}{6} ina he tango te ±. Tango 3\sqrt{13} mai i 15.
x=\frac{5-\sqrt{13}}{2}
Whakawehe 15-3\sqrt{13} ki te 6.
3x^{2}-15x+9=3\left(x-\frac{\sqrt{13}+5}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5+\sqrt{13}}{2} mō te x_{1} me te \frac{5-\sqrt{13}}{2} mō te x_{2}.