Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(x^{2}-4x\right)
Tauwehea te 3.
x\left(x-4\right)
Whakaarohia te x^{2}-4x. Tauwehea te x.
3x\left(x-4\right)
Me tuhi anō te kīanga whakatauwehe katoa.
3x^{2}-12x=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±12}{2\times 3}
Tuhia te pūtakerua o te \left(-12\right)^{2}.
x=\frac{12±12}{2\times 3}
Ko te tauaro o -12 ko 12.
x=\frac{12±12}{6}
Whakareatia 2 ki te 3.
x=\frac{24}{6}
Nā, me whakaoti te whārite x=\frac{12±12}{6} ina he tāpiri te ±. Tāpiri 12 ki te 12.
x=4
Whakawehe 24 ki te 6.
x=\frac{0}{6}
Nā, me whakaoti te whārite x=\frac{12±12}{6} ina he tango te ±. Tango 12 mai i 12.
x=0
Whakawehe 0 ki te 6.
3x^{2}-12x=3\left(x-4\right)x
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te 0 mō te x_{2}.