Tauwehe
3\left(x-\left(-\frac{\sqrt{15}}{3}-1\right)\right)\left(x-\left(\frac{\sqrt{15}}{3}-1\right)\right)
Aromātai
3x^{2}+6x-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+6x-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-2\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{36-4\times 3\left(-2\right)}}{2\times 3}
Pūrua 6.
x=\frac{-6±\sqrt{36-12\left(-2\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-6±\sqrt{36+24}}{2\times 3}
Whakareatia -12 ki te -2.
x=\frac{-6±\sqrt{60}}{2\times 3}
Tāpiri 36 ki te 24.
x=\frac{-6±2\sqrt{15}}{2\times 3}
Tuhia te pūtakerua o te 60.
x=\frac{-6±2\sqrt{15}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{15}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{15}}{6} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{15}.
x=\frac{\sqrt{15}}{3}-1
Whakawehe -6+2\sqrt{15} ki te 6.
x=\frac{-2\sqrt{15}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{15}}{6} ina he tango te ±. Tango 2\sqrt{15} mai i -6.
x=-\frac{\sqrt{15}}{3}-1
Whakawehe -6-2\sqrt{15} ki te 6.
3x^{2}+6x-2=3\left(x-\left(\frac{\sqrt{15}}{3}-1\right)\right)\left(x-\left(-\frac{\sqrt{15}}{3}-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1+\frac{\sqrt{15}}{3} mō te x_{1} me te -1-\frac{\sqrt{15}}{3} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}