Tauwehe
\left(5x+9\right)\left(5x+11\right)
Aromātai
\left(5x+9\right)\left(5x+11\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=100 ab=25\times 99=2475
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 25x^{2}+ax+bx+99. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,2475 3,825 5,495 9,275 11,225 15,165 25,99 33,75 45,55
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 2475.
1+2475=2476 3+825=828 5+495=500 9+275=284 11+225=236 15+165=180 25+99=124 33+75=108 45+55=100
Tātaihia te tapeke mō ia takirua.
a=45 b=55
Ko te otinga te takirua ka hoatu i te tapeke 100.
\left(25x^{2}+45x\right)+\left(55x+99\right)
Tuhia anō te 25x^{2}+100x+99 hei \left(25x^{2}+45x\right)+\left(55x+99\right).
5x\left(5x+9\right)+11\left(5x+9\right)
Tauwehea te 5x i te tuatahi me te 11 i te rōpū tuarua.
\left(5x+9\right)\left(5x+11\right)
Whakatauwehea atu te kīanga pātahi 5x+9 mā te whakamahi i te āhuatanga tātai tohatoha.
25x^{2}+100x+99=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-100±\sqrt{100^{2}-4\times 25\times 99}}{2\times 25}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-100±\sqrt{10000-4\times 25\times 99}}{2\times 25}
Pūrua 100.
x=\frac{-100±\sqrt{10000-100\times 99}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-100±\sqrt{10000-9900}}{2\times 25}
Whakareatia -100 ki te 99.
x=\frac{-100±\sqrt{100}}{2\times 25}
Tāpiri 10000 ki te -9900.
x=\frac{-100±10}{2\times 25}
Tuhia te pūtakerua o te 100.
x=\frac{-100±10}{50}
Whakareatia 2 ki te 25.
x=-\frac{90}{50}
Nā, me whakaoti te whārite x=\frac{-100±10}{50} ina he tāpiri te ±. Tāpiri -100 ki te 10.
x=-\frac{9}{5}
Whakahekea te hautanga \frac{-90}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{110}{50}
Nā, me whakaoti te whārite x=\frac{-100±10}{50} ina he tango te ±. Tango 10 mai i -100.
x=-\frac{11}{5}
Whakahekea te hautanga \frac{-110}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
25x^{2}+100x+99=25\left(x-\left(-\frac{9}{5}\right)\right)\left(x-\left(-\frac{11}{5}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{9}{5} mō te x_{1} me te -\frac{11}{5} mō te x_{2}.
25x^{2}+100x+99=25\left(x+\frac{9}{5}\right)\left(x+\frac{11}{5}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
25x^{2}+100x+99=25\times \frac{5x+9}{5}\left(x+\frac{11}{5}\right)
Tāpiri \frac{9}{5} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25x^{2}+100x+99=25\times \frac{5x+9}{5}\times \frac{5x+11}{5}
Tāpiri \frac{11}{5} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25x^{2}+100x+99=25\times \frac{\left(5x+9\right)\left(5x+11\right)}{5\times 5}
Whakareatia \frac{5x+9}{5} ki te \frac{5x+11}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
25x^{2}+100x+99=25\times \frac{\left(5x+9\right)\left(5x+11\right)}{25}
Whakareatia 5 ki te 5.
25x^{2}+100x+99=\left(5x+9\right)\left(5x+11\right)
Whakakorea atu te tauwehe pūnoa nui rawa 25 i roto i te 25 me te 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}