Tauwehe
\left(2x-5\right)\left(x+1\right)
Aromātai
\left(2x-5\right)\left(x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-3 ab=2\left(-5\right)=-10
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
a=-5 b=2
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(2x^{2}-5x\right)+\left(2x-5\right)
Tuhia anō te 2x^{2}-3x-5 hei \left(2x^{2}-5x\right)+\left(2x-5\right).
x\left(2x-5\right)+2x-5
Whakatauwehea atu x i te 2x^{2}-5x.
\left(2x-5\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 2x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
2x^{2}-3x-5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
Whakareatia -8 ki te -5.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
Tāpiri 9 ki te 40.
x=\frac{-\left(-3\right)±7}{2\times 2}
Tuhia te pūtakerua o te 49.
x=\frac{3±7}{2\times 2}
Ko te tauaro o -3 ko 3.
x=\frac{3±7}{4}
Whakareatia 2 ki te 2.
x=\frac{10}{4}
Nā, me whakaoti te whārite x=\frac{3±7}{4} ina he tāpiri te ±. Tāpiri 3 ki te 7.
x=\frac{5}{2}
Whakahekea te hautanga \frac{10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{3±7}{4} ina he tango te ±. Tango 7 mai i 3.
x=-1
Whakawehe -4 ki te 4.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{2} mō te x_{1} me te -1 mō te x_{2}.
2x^{2}-3x-5=2\left(x-\frac{5}{2}\right)\left(x+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2x^{2}-3x-5=2\times \frac{2x-5}{2}\left(x+1\right)
Tango \frac{5}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2x^{2}-3x-5=\left(2x-5\right)\left(x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}