Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(x^{2}-6x+11\right)
Tauwehea te 2. Kāore te pūrau x^{2}-6x+11 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
2x^{2}-12x+22=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 22}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 22}}{2\times 2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 22}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-12\right)±\sqrt{144-176}}{2\times 2}
Whakareatia -8 ki te 22.
x=\frac{-\left(-12\right)±\sqrt{-32}}{2\times 2}
Tāpiri 144 ki te -176.
2x^{2}-12x+22
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā. Kāore e taea te pūrau pūrua te whakatauwehe.