Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}-6x^{2}-5x+3
Whakawehea te 12 ki te 2, kia riro ko 6.
-4x^{2}-5x+3
Pahekotia te 2x^{2} me -6x^{2}, ka -4x^{2}.
factor(2x^{2}-6x^{2}-5x+3)
Whakawehea te 12 ki te 2, kia riro ko 6.
factor(-4x^{2}-5x+3)
Pahekotia te 2x^{2} me -6x^{2}, ka -4x^{2}.
-4x^{2}-5x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-4\right)\times 3}}{2\left(-4\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-4\right)\times 3}}{2\left(-4\right)}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25+16\times 3}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-\left(-5\right)±\sqrt{25+48}}{2\left(-4\right)}
Whakareatia 16 ki te 3.
x=\frac{-\left(-5\right)±\sqrt{73}}{2\left(-4\right)}
Tāpiri 25 ki te 48.
x=\frac{5±\sqrt{73}}{2\left(-4\right)}
Ko te tauaro o -5 ko 5.
x=\frac{5±\sqrt{73}}{-8}
Whakareatia 2 ki te -4.
x=\frac{\sqrt{73}+5}{-8}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{73}}{-8} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{73}.
x=\frac{-\sqrt{73}-5}{8}
Whakawehe 5+\sqrt{73} ki te -8.
x=\frac{5-\sqrt{73}}{-8}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{73}}{-8} ina he tango te ±. Tango \sqrt{73} mai i 5.
x=\frac{\sqrt{73}-5}{8}
Whakawehe 5-\sqrt{73} ki te -8.
-4x^{2}-5x+3=-4\left(x-\frac{-\sqrt{73}-5}{8}\right)\left(x-\frac{\sqrt{73}-5}{8}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-5-\sqrt{73}}{8} mō te x_{1} me te \frac{-5+\sqrt{73}}{8} mō te x_{2}.