Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+5x+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 2}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{25-4\times 2}}{2\times 2}
Pūrua 5.
x=\frac{-5±\sqrt{25-8}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-5±\sqrt{17}}{2\times 2}
Tāpiri 25 ki te -8.
x=\frac{-5±\sqrt{17}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{17}-5}{4}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{17}}{4} ina he tāpiri te ±. Tāpiri -5 ki te \sqrt{17}.
x=\frac{-\sqrt{17}-5}{4}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{17}}{4} ina he tango te ±. Tango \sqrt{17} mai i -5.
2x^{2}+5x+1=2\left(x-\frac{\sqrt{17}-5}{4}\right)\left(x-\frac{-\sqrt{17}-5}{4}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-5+\sqrt{17}}{4} mō te x_{1} me te \frac{-5-\sqrt{17}}{4} mō te x_{2}.