Tauwehe
\left(a-1\right)\left(2a-3\right)\left(a+2\right)
Aromātai
\left(a-1\right)\left(2a-3\right)\left(a+2\right)
Tohaina
Kua tāruatia ki te papatopenga
\left(2a-3\right)\left(a^{2}+a-2\right)
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 6, ā, ka wehea e q te whakarea arahanga 2. Ko tetahi pūtake pērā ko \frac{3}{2}. Tauwehea te pūrau mā te whakawehe mā te 2a-3.
p+q=1 pq=1\left(-2\right)=-2
Whakaarohia te a^{2}+a-2. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei a^{2}+pa+qa-2. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
p=-1 q=2
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōrunga te p+q, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(a^{2}-a\right)+\left(2a-2\right)
Tuhia anō te a^{2}+a-2 hei \left(a^{2}-a\right)+\left(2a-2\right).
a\left(a-1\right)+2\left(a-1\right)
Tauwehea te a i te tuatahi me te 2 i te rōpū tuarua.
\left(a-1\right)\left(a+2\right)
Whakatauwehea atu te kīanga pātahi a-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2a-3\right)\left(a-1\right)\left(a+2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}