Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2a-3\right)\left(a^{2}+a-2\right)
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 6, ā, ka wehea e q te whakarea arahanga 2. Ko tetahi pūtake pērā ko \frac{3}{2}. Tauwehea te pūrau mā te whakawehe mā te 2a-3.
p+q=1 pq=1\left(-2\right)=-2
Whakaarohia te a^{2}+a-2. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei a^{2}+pa+qa-2. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
p=-1 q=2
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōrunga te p+q, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(a^{2}-a\right)+\left(2a-2\right)
Tuhia anō te a^{2}+a-2 hei \left(a^{2}-a\right)+\left(2a-2\right).
a\left(a-1\right)+2\left(a-1\right)
Tauwehea te a i te tuatahi me te 2 i te rōpū tuarua.
\left(a-1\right)\left(a+2\right)
Whakatauwehea atu te kīanga pātahi a-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2a-3\right)\left(a-1\right)\left(a+2\right)
Me tuhi anō te kīanga whakatauwehe katoa.