Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}-16x+25=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-1\right)\times 25}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-1\right)\times 25}}{2\left(-1\right)}
Pūrua -16.
x=\frac{-\left(-16\right)±\sqrt{256+4\times 25}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-16\right)±\sqrt{256+100}}{2\left(-1\right)}
Whakareatia 4 ki te 25.
x=\frac{-\left(-16\right)±\sqrt{356}}{2\left(-1\right)}
Tāpiri 256 ki te 100.
x=\frac{-\left(-16\right)±2\sqrt{89}}{2\left(-1\right)}
Tuhia te pūtakerua o te 356.
x=\frac{16±2\sqrt{89}}{2\left(-1\right)}
Ko te tauaro o -16 ko 16.
x=\frac{16±2\sqrt{89}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{89}+16}{-2}
Nā, me whakaoti te whārite x=\frac{16±2\sqrt{89}}{-2} ina he tāpiri te ±. Tāpiri 16 ki te 2\sqrt{89}.
x=-\left(\sqrt{89}+8\right)
Whakawehe 16+2\sqrt{89} ki te -2.
x=\frac{16-2\sqrt{89}}{-2}
Nā, me whakaoti te whārite x=\frac{16±2\sqrt{89}}{-2} ina he tango te ±. Tango 2\sqrt{89} mai i 16.
x=\sqrt{89}-8
Whakawehe 16-2\sqrt{89} ki te -2.
-x^{2}-16x+25=-\left(x-\left(-\left(\sqrt{89}+8\right)\right)\right)\left(x-\left(\sqrt{89}-8\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\left(8+\sqrt{89}\right) mō te x_{1} me te -8+\sqrt{89} mō te x_{2}.