Tauwehe
-\left(x-\left(3-\sqrt{14}\right)\right)\left(x-\left(\sqrt{14}+3\right)\right)
Aromātai
5+6x-x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x^{2}+6x+5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+4\times 5}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-6±\sqrt{36+20}}{2\left(-1\right)}
Whakareatia 4 ki te 5.
x=\frac{-6±\sqrt{56}}{2\left(-1\right)}
Tāpiri 36 ki te 20.
x=\frac{-6±2\sqrt{14}}{2\left(-1\right)}
Tuhia te pūtakerua o te 56.
x=\frac{-6±2\sqrt{14}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{14}-6}{-2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{14}}{-2} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{14}.
x=3-\sqrt{14}
Whakawehe -6+2\sqrt{14} ki te -2.
x=\frac{-2\sqrt{14}-6}{-2}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{14}}{-2} ina he tango te ±. Tango 2\sqrt{14} mai i -6.
x=\sqrt{14}+3
Whakawehe -6-2\sqrt{14} ki te -2.
-x^{2}+6x+5=-\left(x-\left(3-\sqrt{14}\right)\right)\left(x-\left(\sqrt{14}+3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3-\sqrt{14} mō te x_{1} me te 3+\sqrt{14} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}