Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x^{2}-36x-5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\left(-2\right)\left(-5\right)}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-36\right)±\sqrt{1296-4\left(-2\right)\left(-5\right)}}{2\left(-2\right)}
Pūrua -36.
x=\frac{-\left(-36\right)±\sqrt{1296+8\left(-5\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-\left(-36\right)±\sqrt{1296-40}}{2\left(-2\right)}
Whakareatia 8 ki te -5.
x=\frac{-\left(-36\right)±\sqrt{1256}}{2\left(-2\right)}
Tāpiri 1296 ki te -40.
x=\frac{-\left(-36\right)±2\sqrt{314}}{2\left(-2\right)}
Tuhia te pūtakerua o te 1256.
x=\frac{36±2\sqrt{314}}{2\left(-2\right)}
Ko te tauaro o -36 ko 36.
x=\frac{36±2\sqrt{314}}{-4}
Whakareatia 2 ki te -2.
x=\frac{2\sqrt{314}+36}{-4}
Nā, me whakaoti te whārite x=\frac{36±2\sqrt{314}}{-4} ina he tāpiri te ±. Tāpiri 36 ki te 2\sqrt{314}.
x=-\frac{\sqrt{314}}{2}-9
Whakawehe 36+2\sqrt{314} ki te -4.
x=\frac{36-2\sqrt{314}}{-4}
Nā, me whakaoti te whārite x=\frac{36±2\sqrt{314}}{-4} ina he tango te ±. Tango 2\sqrt{314} mai i 36.
x=\frac{\sqrt{314}}{2}-9
Whakawehe 36-2\sqrt{314} ki te -4.
-2x^{2}-36x-5=-2\left(x-\left(-\frac{\sqrt{314}}{2}-9\right)\right)\left(x-\left(\frac{\sqrt{314}}{2}-9\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -9-\frac{\sqrt{314}}{2} mō te x_{1} me te -9+\frac{\sqrt{314}}{2} mō te x_{2}.