Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x^{2}-12x-9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+8\left(-9\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-\left(-12\right)±\sqrt{144-72}}{2\left(-2\right)}
Whakareatia 8 ki te -9.
x=\frac{-\left(-12\right)±\sqrt{72}}{2\left(-2\right)}
Tāpiri 144 ki te -72.
x=\frac{-\left(-12\right)±6\sqrt{2}}{2\left(-2\right)}
Tuhia te pūtakerua o te 72.
x=\frac{12±6\sqrt{2}}{2\left(-2\right)}
Ko te tauaro o -12 ko 12.
x=\frac{12±6\sqrt{2}}{-4}
Whakareatia 2 ki te -2.
x=\frac{6\sqrt{2}+12}{-4}
Nā, me whakaoti te whārite x=\frac{12±6\sqrt{2}}{-4} ina he tāpiri te ±. Tāpiri 12 ki te 6\sqrt{2}.
x=-\frac{3\sqrt{2}}{2}-3
Whakawehe 12+6\sqrt{2} ki te -4.
x=\frac{12-6\sqrt{2}}{-4}
Nā, me whakaoti te whārite x=\frac{12±6\sqrt{2}}{-4} ina he tango te ±. Tango 6\sqrt{2} mai i 12.
x=\frac{3\sqrt{2}}{2}-3
Whakawehe 12-6\sqrt{2} ki te -4.
-2x^{2}-12x-9=-2\left(x-\left(-\frac{3\sqrt{2}}{2}-3\right)\right)\left(x-\left(\frac{3\sqrt{2}}{2}-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -3-\frac{3\sqrt{2}}{2} mō te x_{1} me te -3+\frac{3\sqrt{2}}{2} mō te x_{2}.