Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x^{2}-10x+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-2\right)}}{2\left(-2\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-2\right)}}{2\left(-2\right)}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100+8}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-\left(-10\right)±\sqrt{108}}{2\left(-2\right)}
Tāpiri 100 ki te 8.
x=\frac{-\left(-10\right)±6\sqrt{3}}{2\left(-2\right)}
Tuhia te pūtakerua o te 108.
x=\frac{10±6\sqrt{3}}{2\left(-2\right)}
Ko te tauaro o -10 ko 10.
x=\frac{10±6\sqrt{3}}{-4}
Whakareatia 2 ki te -2.
x=\frac{6\sqrt{3}+10}{-4}
Nā, me whakaoti te whārite x=\frac{10±6\sqrt{3}}{-4} ina he tāpiri te ±. Tāpiri 10 ki te 6\sqrt{3}.
x=\frac{-3\sqrt{3}-5}{2}
Whakawehe 10+6\sqrt{3} ki te -4.
x=\frac{10-6\sqrt{3}}{-4}
Nā, me whakaoti te whārite x=\frac{10±6\sqrt{3}}{-4} ina he tango te ±. Tango 6\sqrt{3} mai i 10.
x=\frac{3\sqrt{3}-5}{2}
Whakawehe 10-6\sqrt{3} ki te -4.
-2x^{2}-10x+1=-2\left(x-\frac{-3\sqrt{3}-5}{2}\right)\left(x-\frac{3\sqrt{3}-5}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-5-3\sqrt{3}}{2} mō te x_{1} me te \frac{-5+3\sqrt{3}}{2} mō te x_{2}.