Aromātai
-2\left(x-1\right)\left(x^{2}+1\right)^{3}
Whakaroha
2-2x+6x^{2}-6x^{3}+6x^{4}-6x^{5}+2x^{6}-2x^{7}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2\left(x^{2}+1\right)^{3}\left(x-1\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
-2\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\left(x-1\right)
Whakamahia te ture huarua \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} hei whakaroha \left(x^{2}+1\right)^{3}.
-2\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\left(x-1\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
-2\left(x^{6}+3x^{4}+3x^{2}+1\right)\left(x-1\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\left(-2x^{6}-6x^{4}-6x^{2}-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x^{6}+3x^{4}+3x^{2}+1.
-2x^{7}+2x^{6}-6x^{5}+6x^{4}-6x^{3}+6x^{2}-2x+2
Whakamahia te āhuatanga tohatoha hei whakarea te -2x^{6}-6x^{4}-6x^{2}-2 ki te x-1.
-2\left(x^{2}+1\right)^{3}\left(x-1\right)
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
-2\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\left(x-1\right)
Whakamahia te ture huarua \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} hei whakaroha \left(x^{2}+1\right)^{3}.
-2\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\left(x-1\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
-2\left(x^{6}+3x^{4}+3x^{2}+1\right)\left(x-1\right)
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\left(-2x^{6}-6x^{4}-6x^{2}-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x^{6}+3x^{4}+3x^{2}+1.
-2x^{7}+2x^{6}-6x^{5}+6x^{4}-6x^{3}+6x^{2}-2x+2
Whakamahia te āhuatanga tohatoha hei whakarea te -2x^{6}-6x^{4}-6x^{2}-2 ki te x-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}