Tīpoka ki ngā ihirangi matua
Whakaoti mō f (complex solution)
Tick mark Image
Whakaoti mō f
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

fx=x^{2}-x\beta -\alpha x+\beta \alpha
Whakamahia te āhuatanga tohatoha hei whakarea te x-\alpha ki te x-\beta .
xf=x^{2}-x\alpha -x\beta +\alpha \beta
He hanga arowhānui tō te whārite.
\frac{xf}{x}=\frac{\left(x-\alpha \right)\left(x-\beta \right)}{x}
Whakawehea ngā taha e rua ki te x.
f=\frac{\left(x-\alpha \right)\left(x-\beta \right)}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
fx=x^{2}-x\beta -\alpha x+\beta \alpha
Whakamahia te āhuatanga tohatoha hei whakarea te x-\alpha ki te x-\beta .
xf=x^{2}-x\alpha -x\beta +\alpha \beta
He hanga arowhānui tō te whārite.
\frac{xf}{x}=\frac{\left(x-\alpha \right)\left(x-\beta \right)}{x}
Whakawehea ngā taha e rua ki te x.
f=\frac{\left(x-\alpha \right)\left(x-\beta \right)}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.