Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int t^{3}+2t^{2}+1\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int t^{3}\mathrm{d}t+\int 2t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
\int t^{3}\mathrm{d}t+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{t^{4}}{4}+2\int t^{2}\mathrm{d}t+\int 1\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{3}\mathrm{d}t ki te \frac{t^{4}}{4}.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+\int 1\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{2}\mathrm{d}t ki te \frac{t^{3}}{3}. Whakareatia 2 ki te \frac{t^{3}}{3}.
\frac{t^{4}}{4}+\frac{2t^{3}}{3}+t
Kimihia te tau tōpū o 1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}t=at.
\frac{x^{4}}{4}+\frac{2}{3}x^{3}+x-\left(\frac{0^{4}}{4}+\frac{2}{3}\times 0^{3}+0\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{x^{4}}{4}+\frac{2x^{3}}{3}+x
Whakarūnātia.