Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int t^{2}-t\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int t^{2}\mathrm{d}t+\int -t\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
\int t^{2}\mathrm{d}t-\int t\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{t^{3}}{3}-\int t\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{2}\mathrm{d}t ki te \frac{t^{3}}{3}.
\frac{t^{3}}{3}-\frac{t^{2}}{2}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t\mathrm{d}t ki te \frac{t^{2}}{2}. Whakareatia -1 ki te \frac{t^{2}}{2}.
\frac{x^{3}}{3}-\frac{x^{2}}{2}-\left(\frac{0^{3}}{3}-\frac{0^{2}}{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{x^{2}}{2}+\frac{x^{3}}{3}
Whakarūnātia.