Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{2}-3x^{1}+70\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-3x^{1}+70)}{\left(x^{2}-3x^{1}+70\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-3x^{1}+70\right)\times 2x^{2-1}-x^{2}\left(2x^{2-1}-3x^{1-1}\right)}{\left(x^{2}-3x^{1}+70\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-3x^{1}+70\right)\times 2x^{1}-x^{2}\left(2x^{1}-3x^{0}\right)}{\left(x^{2}-3x^{1}+70\right)^{2}}
Whakarūnātia.
\frac{x^{2}\times 2x^{1}-3x^{1}\times 2x^{1}+70\times 2x^{1}-x^{2}\left(2x^{1}-3x^{0}\right)}{\left(x^{2}-3x^{1}+70\right)^{2}}
Whakareatia x^{2}-3x^{1}+70 ki te 2x^{1}.
\frac{x^{2}\times 2x^{1}-3x^{1}\times 2x^{1}+70\times 2x^{1}-\left(x^{2}\times 2x^{1}+x^{2}\left(-3\right)x^{0}\right)}{\left(x^{2}-3x^{1}+70\right)^{2}}
Whakareatia x^{2} ki te 2x^{1}-3x^{0}.
\frac{2x^{2+1}-3\times 2x^{1+1}+70\times 2x^{1}-\left(2x^{2+1}-3x^{2}\right)}{\left(x^{2}-3x^{1}+70\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2x^{3}-6x^{2}+140x^{1}-\left(2x^{3}-3x^{2}\right)}{\left(x^{2}-3x^{1}+70\right)^{2}}
Whakarūnātia.
\frac{-3x^{2}+140x^{1}}{\left(x^{2}-3x^{1}+70\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-3x^{2}+140x}{\left(x^{2}-3x+70\right)^{2}}
Mō tētahi kupu t, t^{1}=t.