Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1})-5x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+7)}{\left(-x^{1}+7\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(-x^{1}+7\right)\times 5x^{1-1}-5x^{1}\left(-1\right)x^{1-1}}{\left(-x^{1}+7\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(-x^{1}+7\right)\times 5x^{0}-5x^{1}\left(-1\right)x^{0}}{\left(-x^{1}+7\right)^{2}}
Mahia ngā tātaitanga.
\frac{-x^{1}\times 5x^{0}+7\times 5x^{0}-5x^{1}\left(-1\right)x^{0}}{\left(-x^{1}+7\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-5x^{1}+7\times 5x^{0}-5\left(-1\right)x^{1}}{\left(-x^{1}+7\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-5x^{1}+35x^{0}-\left(-5x^{1}\right)}{\left(-x^{1}+7\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(-5-\left(-5\right)\right)x^{1}+35x^{0}}{\left(-x^{1}+7\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{35x^{0}}{\left(-x^{1}+7\right)^{2}}
Tango -5 mai i -5.
\frac{35x^{0}}{\left(-x+7\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{35\times 1}{\left(-x+7\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{35}{\left(-x+7\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.