Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(3x^{3}-5\right)}{3\left(3x^{3}-5\right)}-\frac{3\left(2x^{2}+3\right)}{3\left(3x^{3}-5\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 3x^{3}-5 ko 3\left(3x^{3}-5\right). Whakareatia \frac{4}{3} ki te \frac{3x^{3}-5}{3x^{3}-5}. Whakareatia \frac{2x^{2}+3}{3x^{3}-5} ki te \frac{3}{3}.
\frac{4\left(3x^{3}-5\right)-3\left(2x^{2}+3\right)}{3\left(3x^{3}-5\right)}
Tā te mea he rite te tauraro o \frac{4\left(3x^{3}-5\right)}{3\left(3x^{3}-5\right)} me \frac{3\left(2x^{2}+3\right)}{3\left(3x^{3}-5\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{12x^{3}-20-6x^{2}-9}{3\left(3x^{3}-5\right)}
Mahia ngā whakarea i roto o 4\left(3x^{3}-5\right)-3\left(2x^{2}+3\right).
\frac{12x^{3}-29-6x^{2}}{3\left(3x^{3}-5\right)}
Whakakotahitia ngā kupu rite i 12x^{3}-20-6x^{2}-9.
\frac{12x^{3}-29-6x^{2}}{9x^{3}-15}
Whakarohaina te 3\left(3x^{3}-5\right).
\frac{4\left(3x^{3}-5\right)}{3\left(3x^{3}-5\right)}-\frac{3\left(2x^{2}+3\right)}{3\left(3x^{3}-5\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 3x^{3}-5 ko 3\left(3x^{3}-5\right). Whakareatia \frac{4}{3} ki te \frac{3x^{3}-5}{3x^{3}-5}. Whakareatia \frac{2x^{2}+3}{3x^{3}-5} ki te \frac{3}{3}.
\frac{4\left(3x^{3}-5\right)-3\left(2x^{2}+3\right)}{3\left(3x^{3}-5\right)}
Tā te mea he rite te tauraro o \frac{4\left(3x^{3}-5\right)}{3\left(3x^{3}-5\right)} me \frac{3\left(2x^{2}+3\right)}{3\left(3x^{3}-5\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{12x^{3}-20-6x^{2}-9}{3\left(3x^{3}-5\right)}
Mahia ngā whakarea i roto o 4\left(3x^{3}-5\right)-3\left(2x^{2}+3\right).
\frac{12x^{3}-29-6x^{2}}{3\left(3x^{3}-5\right)}
Whakakotahitia ngā kupu rite i 12x^{3}-20-6x^{2}-9.
\frac{12x^{3}-29-6x^{2}}{9x^{3}-15}
Whakarohaina te 3\left(3x^{3}-5\right).