Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{3}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+1)}{\left(x^{3}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{3}+1\right)\times 3x^{1-1}-3x^{1}\times 3x^{3-1}}{\left(x^{3}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{3}+1\right)\times 3x^{0}-3x^{1}\times 3x^{2}}{\left(x^{3}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{3}\times 3x^{0}+3x^{0}-3x^{1}\times 3x^{2}}{\left(x^{3}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3x^{3}+3x^{0}-3\times 3x^{1+2}}{\left(x^{3}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3x^{3}+3x^{0}-9x^{3}}{\left(x^{3}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(3-9\right)x^{3}+3x^{0}}{\left(x^{3}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-6x^{3}+3x^{0}}{\left(x^{3}+1\right)^{2}}
Tango 9 mai i 3.
\frac{3\left(-2x^{3}+x^{0}\right)}{\left(x^{3}+1\right)^{2}}
Tauwehea te 3.
\frac{3\left(-2x^{3}+1\right)}{\left(x^{3}+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.