Aromātai
\frac{x+5}{x+2}
Kimi Pārōnaki e ai ki x
-\frac{3}{\left(x+2\right)^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{x+2}+\frac{x+2}{x+2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x+2}{x+2}.
\frac{3+x+2}{x+2}
Tā te mea he rite te tauraro o \frac{3}{x+2} me \frac{x+2}{x+2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5+x}{x+2}
Whakakotahitia ngā kupu rite i 3+x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{x+2}+\frac{x+2}{x+2})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3+x+2}{x+2})
Tā te mea he rite te tauraro o \frac{3}{x+2} me \frac{x+2}{x+2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5+x}{x+2})
Whakakotahitia ngā kupu rite i 3+x+2.
\frac{\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+5)-\left(x^{1}+5\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)}{\left(x^{1}+2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}+2\right)x^{1-1}-\left(x^{1}+5\right)x^{1-1}}{\left(x^{1}+2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}+2\right)x^{0}-\left(x^{1}+5\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}x^{0}+2x^{0}-\left(x^{1}x^{0}+5x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{x^{1}+2x^{0}-\left(x^{1}+5x^{0}\right)}{\left(x^{1}+2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{x^{1}+2x^{0}-x^{1}-5x^{0}}{\left(x^{1}+2\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(1-1\right)x^{1}+\left(2-5\right)x^{0}}{\left(x^{1}+2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-3x^{0}}{\left(x^{1}+2\right)^{2}}
Tangohia te 1 i 1 me te 5 i te 2.
\frac{-3x^{0}}{\left(x+2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-3}{\left(x+2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}