Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{20}{1-x}+\frac{1-x}{1-x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{1-x}{1-x}.
\frac{20+1-x}{1-x}
Tā te mea he rite te tauraro o \frac{20}{1-x} me \frac{1-x}{1-x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{21-x}{1-x}
Whakakotahitia ngā kupu rite i 20+1-x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{20}{1-x}+\frac{1-x}{1-x})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{1-x}{1-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{20+1-x}{1-x})
Tā te mea he rite te tauraro o \frac{20}{1-x} me \frac{1-x}{1-x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{21-x}{1-x})
Whakakotahitia ngā kupu rite i 20+1-x.
\frac{\left(-x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+21)-\left(-x^{1}+21\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+1)}{\left(-x^{1}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(-x^{1}+1\right)\left(-1\right)x^{1-1}-\left(-x^{1}+21\right)\left(-1\right)x^{1-1}}{\left(-x^{1}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(-x^{1}+1\right)\left(-1\right)x^{0}-\left(-x^{1}+21\right)\left(-1\right)x^{0}}{\left(-x^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{-x^{1}\left(-1\right)x^{0}-x^{0}-\left(-x^{1}\left(-1\right)x^{0}+21\left(-1\right)x^{0}\right)}{\left(-x^{1}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-\left(-1\right)x^{1}-x^{0}-\left(-\left(-1\right)x^{1}+21\left(-1\right)x^{0}\right)}{\left(-x^{1}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{x^{1}-x^{0}-\left(x^{1}-21x^{0}\right)}{\left(-x^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}-x^{0}-x^{1}-\left(-21x^{0}\right)}{\left(-x^{1}+1\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(1-1\right)x^{1}+\left(-1-\left(-21\right)\right)x^{0}}{\left(-x^{1}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{20x^{0}}{\left(-x^{1}+1\right)^{2}}
Tangohia te 1 i 1 me te -21 i te -1.
\frac{20x^{0}}{\left(-x+1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{20\times 1}{\left(-x+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{20}{\left(-x+1\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.