Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2}{x+3}-\frac{5\left(x+3\right)}{x+3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{x+3}{x+3}.
\frac{2-5\left(x+3\right)}{x+3}
Tā te mea he rite te tauraro o \frac{2}{x+3} me \frac{5\left(x+3\right)}{x+3}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-5x-15}{x+3}
Mahia ngā whakarea i roto o 2-5\left(x+3\right).
\frac{-13-5x}{x+3}
Whakakotahitia ngā kupu rite i 2-5x-15.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x+3}-\frac{5\left(x+3\right)}{x+3})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 5 ki te \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-5\left(x+3\right)}{x+3})
Tā te mea he rite te tauraro o \frac{2}{x+3} me \frac{5\left(x+3\right)}{x+3}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2-5x-15}{x+3})
Mahia ngā whakarea i roto o 2-5\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-13-5x}{x+3})
Whakakotahitia ngā kupu rite i 2-5x-15.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-13)-\left(-5x^{1}-13\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}+3\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-13\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}+3\right)\left(-5\right)x^{0}-\left(-5x^{1}-13\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\left(-5\right)x^{0}+3\left(-5\right)x^{0}-\left(-5x^{1}x^{0}-13x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-5x^{1}+3\left(-5\right)x^{0}-\left(-5x^{1}-13x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-5x^{1}-15x^{0}-\left(-5x^{1}-13x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Mahia ngā tātaitanga.
\frac{-5x^{1}-15x^{0}-\left(-5x^{1}\right)-\left(-13x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(-5-\left(-5\right)\right)x^{1}+\left(-15-\left(-13\right)\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-2x^{0}}{\left(x^{1}+3\right)^{2}}
Tangohia te -5 i -5 me te -13 i te -15.
\frac{-2x^{0}}{\left(x+3\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-2}{\left(x+3\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.