Whakaoti mō x
x=\frac{\sqrt{17}-3}{4}\approx 0.280776406
x=\frac{-\sqrt{17}-3}{4}\approx -1.780776406
Graph
Tohaina
Kua tāruatia ki te papatopenga
1=x\left(2x+3\right)
Tē taea kia ōrite te tāupe x ki -\frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x+3.
1=2x^{2}+3x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+3.
2x^{2}+3x=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+3x-1=0
Tangohia te 1 mai i ngā taha e rua.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-1\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 3 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-1\right)}}{2\times 2}
Pūrua 3.
x=\frac{-3±\sqrt{9-8\left(-1\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-3±\sqrt{9+8}}{2\times 2}
Whakareatia -8 ki te -1.
x=\frac{-3±\sqrt{17}}{2\times 2}
Tāpiri 9 ki te 8.
x=\frac{-3±\sqrt{17}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{17}-3}{4}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{17}}{4} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{17}.
x=\frac{-\sqrt{17}-3}{4}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{17}}{4} ina he tango te ±. Tango \sqrt{17} mai i -3.
x=\frac{\sqrt{17}-3}{4} x=\frac{-\sqrt{17}-3}{4}
Kua oti te whārite te whakatau.
1=x\left(2x+3\right)
Tē taea kia ōrite te tāupe x ki -\frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x+3.
1=2x^{2}+3x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+3.
2x^{2}+3x=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2x^{2}+3x}{2}=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{3}{2}x=\frac{1}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{1}{2}+\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{1}{2}+\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{17}{16}
Tāpiri \frac{1}{2} ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{4}\right)^{2}=\frac{17}{16}
Tauwehea x^{2}+\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{4}=\frac{\sqrt{17}}{4} x+\frac{3}{4}=-\frac{\sqrt{17}}{4}
Whakarūnātia.
x=\frac{\sqrt{17}-3}{4} x=\frac{-\sqrt{17}-3}{4}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}