Whakaoti mō f (complex solution)
\left\{\begin{matrix}\\f=0\text{, }&\text{unconditionally}\\f\in \mathrm{C}\text{, }&x=\frac{9}{26}\end{matrix}\right.
Whakaoti mō x (complex solution)
\left\{\begin{matrix}\\x=\frac{9}{26}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&f=0\end{matrix}\right.
Whakaoti mō f
\left\{\begin{matrix}\\f=0\text{, }&\text{unconditionally}\\f\in \mathrm{R}\text{, }&x=\frac{9}{26}\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}\\x=\frac{9}{26}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&f=0\end{matrix}\right.
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
f ( x + 2 ) - f ( x - 1 ) = \frac { 26 } { 3 } f ( x )
Tohaina
Kua tāruatia ki te papatopenga
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
Whakamahia te āhuatanga tohatoha hei whakarea te f ki te x+2.
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
Whakamahia te āhuatanga tohatoha hei whakarea te f ki te x-1.
fx+2f-fx+f=\frac{26}{3}fx
Hei kimi i te tauaro o fx-f, kimihia te tauaro o ia taurangi.
2f+f=\frac{26}{3}fx
Pahekotia te fx me -fx, ka 0.
3f=\frac{26}{3}fx
Pahekotia te 2f me f, ka 3f.
3f-\frac{26}{3}fx=0
Tangohia te \frac{26}{3}fx mai i ngā taha e rua.
\left(3-\frac{26}{3}x\right)f=0
Pahekotia ngā kīanga tau katoa e whai ana i te f.
\left(-\frac{26x}{3}+3\right)f=0
He hanga arowhānui tō te whārite.
f=0
Whakawehe 0 ki te 3-\frac{26}{3}x.
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
Whakamahia te āhuatanga tohatoha hei whakarea te f ki te x+2.
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
Whakamahia te āhuatanga tohatoha hei whakarea te f ki te x-1.
fx+2f-fx+f=\frac{26}{3}fx
Hei kimi i te tauaro o fx-f, kimihia te tauaro o ia taurangi.
2f+f=\frac{26}{3}fx
Pahekotia te fx me -fx, ka 0.
3f=\frac{26}{3}fx
Pahekotia te 2f me f, ka 3f.
\frac{26}{3}fx=3f
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{26f}{3}x=3f
He hanga arowhānui tō te whārite.
\frac{3\times \frac{26f}{3}x}{26f}=\frac{3\times 3f}{26f}
Whakawehea ngā taha e rua ki te \frac{26}{3}f.
x=\frac{3\times 3f}{26f}
Mā te whakawehe ki te \frac{26}{3}f ka wetekia te whakareanga ki te \frac{26}{3}f.
x=\frac{9}{26}
Whakawehe 3f ki te \frac{26}{3}f.
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
Whakamahia te āhuatanga tohatoha hei whakarea te f ki te x+2.
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
Whakamahia te āhuatanga tohatoha hei whakarea te f ki te x-1.
fx+2f-fx+f=\frac{26}{3}fx
Hei kimi i te tauaro o fx-f, kimihia te tauaro o ia taurangi.
2f+f=\frac{26}{3}fx
Pahekotia te fx me -fx, ka 0.
3f=\frac{26}{3}fx
Pahekotia te 2f me f, ka 3f.
3f-\frac{26}{3}fx=0
Tangohia te \frac{26}{3}fx mai i ngā taha e rua.
\left(3-\frac{26}{3}x\right)f=0
Pahekotia ngā kīanga tau katoa e whai ana i te f.
\left(-\frac{26x}{3}+3\right)f=0
He hanga arowhānui tō te whārite.
f=0
Whakawehe 0 ki te 3-\frac{26}{3}x.
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
Whakamahia te āhuatanga tohatoha hei whakarea te f ki te x+2.
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
Whakamahia te āhuatanga tohatoha hei whakarea te f ki te x-1.
fx+2f-fx+f=\frac{26}{3}fx
Hei kimi i te tauaro o fx-f, kimihia te tauaro o ia taurangi.
2f+f=\frac{26}{3}fx
Pahekotia te fx me -fx, ka 0.
3f=\frac{26}{3}fx
Pahekotia te 2f me f, ka 3f.
\frac{26}{3}fx=3f
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{26f}{3}x=3f
He hanga arowhānui tō te whārite.
\frac{3\times \frac{26f}{3}x}{26f}=\frac{3\times 3f}{26f}
Whakawehea ngā taha e rua ki te \frac{26}{3}f.
x=\frac{3\times 3f}{26f}
Mā te whakawehe ki te \frac{26}{3}f ka wetekia te whakareanga ki te \frac{26}{3}f.
x=\frac{9}{26}
Whakawehe 3f ki te \frac{26}{3}f.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}