Tauwehe
6t\left(21-t\right)
Aromātai
6t\left(21-t\right)
Tohaina
Kua tāruatia ki te papatopenga
6\left(21t-t^{2}\right)
Tauwehea te 6.
t\left(21-t\right)
Whakaarohia te 21t-t^{2}. Tauwehea te t.
6t\left(-t+21\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-6t^{2}+126t=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-126±\sqrt{126^{2}}}{2\left(-6\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-126±126}{2\left(-6\right)}
Tuhia te pūtakerua o te 126^{2}.
t=\frac{-126±126}{-12}
Whakareatia 2 ki te -6.
t=\frac{0}{-12}
Nā, me whakaoti te whārite t=\frac{-126±126}{-12} ina he tāpiri te ±. Tāpiri -126 ki te 126.
t=0
Whakawehe 0 ki te -12.
t=-\frac{252}{-12}
Nā, me whakaoti te whārite t=\frac{-126±126}{-12} ina he tango te ±. Tango 126 mai i -126.
t=21
Whakawehe -252 ki te -12.
-6t^{2}+126t=-6t\left(t-21\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te 21 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}