Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki t
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2t^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{1})-2t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(2t^{2}+1)}{\left(2t^{2}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(2t^{2}+1\right)\times 2t^{1-1}-2t^{1}\times 2\times 2t^{2-1}}{\left(2t^{2}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(2t^{2}+1\right)\times 2t^{0}-2t^{1}\times 4t^{1}}{\left(2t^{2}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{2t^{2}\times 2t^{0}+2t^{0}-2t^{1}\times 4t^{1}}{\left(2t^{2}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2\times 2t^{2}+2t^{0}-2\times 4t^{1+1}}{\left(2t^{2}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{4t^{2}+2t^{0}-8t^{2}}{\left(2t^{2}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(4-8\right)t^{2}+2t^{0}}{\left(2t^{2}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-4t^{2}+2t^{0}}{\left(2t^{2}+1\right)^{2}}
Tango 8 mai i 4.
\frac{2\left(-2t^{2}+t^{0}\right)}{\left(2t^{2}+1\right)^{2}}
Tauwehea te 2.
\frac{2\left(-2t^{2}+1\right)}{\left(2t^{2}+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.