Aromātai
\frac{35}{12}\approx 2.916666667
Tauwehe
\frac{5 \cdot 7}{2 ^ {2} \cdot 3} = 2\frac{11}{12} = 2.9166666666666665
Tohaina
Kua tāruatia ki te papatopenga
\frac{8+3}{4}-\frac{1\times 2+1}{2}-\left(-\frac{1\times 3+2}{3}\right)
Whakareatia te 2 ki te 4, ka 8.
\frac{11}{4}-\frac{1\times 2+1}{2}-\left(-\frac{1\times 3+2}{3}\right)
Tāpirihia te 8 ki te 3, ka 11.
\frac{11}{4}-\frac{2+1}{2}-\left(-\frac{1\times 3+2}{3}\right)
Whakareatia te 1 ki te 2, ka 2.
\frac{11}{4}-\frac{3}{2}-\left(-\frac{1\times 3+2}{3}\right)
Tāpirihia te 2 ki te 1, ka 3.
\frac{11}{4}-\frac{6}{4}-\left(-\frac{1\times 3+2}{3}\right)
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{11}{4} me \frac{3}{2} ki te hautau me te tautūnga 4.
\frac{11-6}{4}-\left(-\frac{1\times 3+2}{3}\right)
Tā te mea he rite te tauraro o \frac{11}{4} me \frac{6}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{4}-\left(-\frac{1\times 3+2}{3}\right)
Tangohia te 6 i te 11, ka 5.
\frac{5}{4}-\left(-\frac{3+2}{3}\right)
Whakareatia te 1 ki te 3, ka 3.
\frac{5}{4}-\left(-\frac{5}{3}\right)
Tāpirihia te 3 ki te 2, ka 5.
\frac{5}{4}+\frac{5}{3}
Ko te tauaro o -\frac{5}{3} ko \frac{5}{3}.
\frac{15}{12}+\frac{20}{12}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{5}{4} me \frac{5}{3} ki te hautau me te tautūnga 12.
\frac{15+20}{12}
Tā te mea he rite te tauraro o \frac{15}{12} me \frac{20}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{35}{12}
Tāpirihia te 15 ki te 20, ka 35.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}