Aromātai
40807
Tauwehe
13\times 43\times 73
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
f ( 201 ) = \frac { ( 201 ) ^ { 3 } - 8 } { ( 201 ) - 2 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{8120601-8}{201-2}
Tātaihia te 201 mā te pū o 3, kia riro ko 8120601.
\frac{8120593}{201-2}
Tangohia te 8 i te 8120601, ka 8120593.
\frac{8120593}{199}
Tangohia te 2 i te 201, ka 199.
40807
Whakawehea te 8120593 ki te 199, kia riro ko 40807.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}