Aromātai
6f
Kimi Pārōnaki e ai ki f
6
Tohaina
Kua tāruatia ki te papatopenga
0+f\times 1+f\times 2+f\times 3
Ko te tau i whakarea ki te kore ka hua ko te kore.
0+3f+f\times 3
Pahekotia te f\times 1 me f\times 2, ka 3f.
0+6f
Pahekotia te 3f me f\times 3, ka 6f.
6f
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}f}(0+f\times 1+f\times 2+f\times 3)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}f}(0+3f+f\times 3)
Pahekotia te f\times 1 me f\times 2, ka 3f.
\frac{\mathrm{d}}{\mathrm{d}f}(0+6f)
Pahekotia te 3f me f\times 3, ka 6f.
\frac{\mathrm{d}}{\mathrm{d}f}(6f)
Ko te tau i tāpiria he kore ka hua koia tonu.
6f^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
6f^{0}
Tango 1 mai i 1.
6\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
6
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}