Aromātai
-\frac{21}{5}=-4.2
Tauwehe
-\frac{21}{5} = -4\frac{1}{5} = -4.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{-27-2\left(-3\right)}{\left(-3\right)^{2}-4}
Tātaihia te -3 mā te pū o 3, kia riro ko -27.
\frac{-27-\left(-6\right)}{\left(-3\right)^{2}-4}
Whakareatia te 2 ki te -3, ka -6.
\frac{-27+6}{\left(-3\right)^{2}-4}
Ko te tauaro o -6 ko 6.
\frac{-21}{\left(-3\right)^{2}-4}
Tāpirihia te -27 ki te 6, ka -21.
\frac{-21}{9-4}
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
\frac{-21}{5}
Tangohia te 4 i te 9, ka 5.
-\frac{21}{5}
Ka taea te hautanga \frac{-21}{5} te tuhi anō ko -\frac{21}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}