Aromātai
-12
Tauwehe
-12
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{1}{3}-\frac{3}{3}}{2\left(-\frac{1}{3}\right)^{2}-\left(-\frac{1}{3}\right)^{2}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{\frac{-1-3}{3}}{2\left(-\frac{1}{3}\right)^{2}-\left(-\frac{1}{3}\right)^{2}}
Tā te mea he rite te tauraro o -\frac{1}{3} me \frac{3}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{4}{3}}{2\left(-\frac{1}{3}\right)^{2}-\left(-\frac{1}{3}\right)^{2}}
Tangohia te 3 i te -1, ka -4.
\frac{-\frac{4}{3}}{2\times \frac{1}{9}-\left(-\frac{1}{3}\right)^{2}}
Tātaihia te -\frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
\frac{-\frac{4}{3}}{\frac{2}{9}-\left(-\frac{1}{3}\right)^{2}}
Whakareatia te 2 ki te \frac{1}{9}, ka \frac{2}{9}.
\frac{-\frac{4}{3}}{\frac{2}{9}-\frac{1}{9}}
Tātaihia te -\frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
\frac{-\frac{4}{3}}{\frac{2-1}{9}}
Tā te mea he rite te tauraro o \frac{2}{9} me \frac{1}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{4}{3}}{\frac{1}{9}}
Tangohia te 1 i te 2, ka 1.
-\frac{4}{3}\times 9
Whakawehe -\frac{4}{3} ki te \frac{1}{9} mā te whakarea -\frac{4}{3} ki te tau huripoki o \frac{1}{9}.
\frac{-4\times 9}{3}
Tuhia te -\frac{4}{3}\times 9 hei hautanga kotahi.
\frac{-36}{3}
Whakareatia te -4 ki te 9, ka -36.
-12
Whakawehea te -36 ki te 3, kia riro ko -12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}