Aromātai
-\frac{3f^{2}}{2}
Kimi Pārōnaki e ai ki f
-3f
Tohaina
Kua tāruatia ki te papatopenga
f^{2}\left(-\frac{1}{2}\right)\times 3+0
Whakareatia te f ki te f, ka f^{2}.
f^{2}\times \frac{-3}{2}+0
Tuhia te -\frac{1}{2}\times 3 hei hautanga kotahi.
f^{2}\left(-\frac{3}{2}\right)+0
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
f^{2}\left(-\frac{3}{2}\right)
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{1}{2}\right)\times 3+0)
Whakareatia te f ki te f, ka f^{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\times \frac{-3}{2}+0)
Tuhia te -\frac{1}{2}\times 3 hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{3}{2}\right)+0)
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{3}{2}\right))
Ko te tau i tāpiria he kore ka hua koia tonu.
2\left(-\frac{3}{2}\right)f^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-3f^{2-1}
Whakareatia 2 ki te -\frac{3}{2}.
-3f^{1}
Tango 1 mai i 2.
-3f
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}