Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki f
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

f^{2}\left(-\frac{1}{2}\right)\times 3+0
Whakareatia te f ki te f, ka f^{2}.
f^{2}\times \frac{-3}{2}+0
Tuhia te -\frac{1}{2}\times 3 hei hautanga kotahi.
f^{2}\left(-\frac{3}{2}\right)+0
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
f^{2}\left(-\frac{3}{2}\right)
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{1}{2}\right)\times 3+0)
Whakareatia te f ki te f, ka f^{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\times \frac{-3}{2}+0)
Tuhia te -\frac{1}{2}\times 3 hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{3}{2}\right)+0)
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
\frac{\mathrm{d}}{\mathrm{d}f}(f^{2}\left(-\frac{3}{2}\right))
Ko te tau i tāpiria he kore ka hua koia tonu.
2\left(-\frac{3}{2}\right)f^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-3f^{2-1}
Whakareatia 2 ki te -\frac{3}{2}.
-3f^{1}
Tango 1 mai i 2.
-3f
Mō tētahi kupu t, t^{1}=t.