Whakaoti mō f
f=\frac{2}{3}-\frac{8}{x}
x\neq 0
Whakaoti mō x
x=-\frac{24}{3f-2}
f\neq \frac{2}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3fx+24=2x
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3fx=2x-24
Tangohia te 24 mai i ngā taha e rua.
3xf=2x-24
He hanga arowhānui tō te whārite.
\frac{3xf}{3x}=\frac{2x-24}{3x}
Whakawehea ngā taha e rua ki te 3x.
f=\frac{2x-24}{3x}
Mā te whakawehe ki te 3x ka wetekia te whakareanga ki te 3x.
f=\frac{2}{3}-\frac{8}{x}
Whakawehe -24+2x ki te 3x.
3fx+24=2x
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3fx+24-2x=0
Tangohia te 2x mai i ngā taha e rua.
3fx-2x=-24
Tangohia te 24 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(3f-2\right)x=-24
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(3f-2\right)x}{3f-2}=-\frac{24}{3f-2}
Whakawehea ngā taha e rua ki te 3f-2.
x=-\frac{24}{3f-2}
Mā te whakawehe ki te 3f-2 ka wetekia te whakareanga ki te 3f-2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}