Tīpoka ki ngā ihirangi matua
Whakaoti mō f
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

f^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
\left(f-1\right)\left(f+1\right)=0
Whakaarohia te f^{2}-1. Tuhia anō te f^{2}-1 hei f^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
f=1 f=-1
Hei kimi otinga whārite, me whakaoti te f-1=0 me te f+1=0.
f=1 f=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
f^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
f=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
f=\frac{0±\sqrt{-4\left(-1\right)}}{2}
Pūrua 0.
f=\frac{0±\sqrt{4}}{2}
Whakareatia -4 ki te -1.
f=\frac{0±2}{2}
Tuhia te pūtakerua o te 4.
f=1
Nā, me whakaoti te whārite f=\frac{0±2}{2} ina he tāpiri te ±. Whakawehe 2 ki te 2.
f=-1
Nā, me whakaoti te whārite f=\frac{0±2}{2} ina he tango te ±. Whakawehe -2 ki te 2.
f=1 f=-1
Kua oti te whārite te whakatau.