Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō f
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

f^{-1}x-3x=0
Tangohia te 3x mai i ngā taha e rua.
-3x+\frac{1}{f}x=0
Whakaraupapatia anō ngā kīanga tau.
-3xf+1x=0
Whakareatia ngā taha e rua o te whārite ki te f.
-3fx+x=0
Whakaraupapatia anō ngā kīanga tau.
\left(-3f+1\right)x=0
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(1-3f\right)x=0
He hanga arowhānui tō te whārite.
x=0
Whakawehe 0 ki te 1-3f.
\frac{1}{f}x=3x
Whakaraupapatia anō ngā kīanga tau.
1x=3xf
Tē taea kia ōrite te tāupe f ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te f.
3xf=1x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3fx=x
Whakaraupapatia anō ngā kīanga tau.
3xf=x
He hanga arowhānui tō te whārite.
\frac{3xf}{3x}=\frac{x}{3x}
Whakawehea ngā taha e rua ki te 3x.
f=\frac{x}{3x}
Mā te whakawehe ki te 3x ka wetekia te whakareanga ki te 3x.
f=\frac{1}{3}
Whakawehe x ki te 3x.
f^{-1}x-3x=0
Tangohia te 3x mai i ngā taha e rua.
-3x+\frac{1}{f}x=0
Whakaraupapatia anō ngā kīanga tau.
-3xf+1x=0
Whakareatia ngā taha e rua o te whārite ki te f.
-3fx+x=0
Whakaraupapatia anō ngā kīanga tau.
\left(-3f+1\right)x=0
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(1-3f\right)x=0
He hanga arowhānui tō te whārite.
x=0
Whakawehe 0 ki te 1-3f.