Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=0\text{, }&f\neq 0\\x\in \mathrm{C}\text{, }&f=\frac{1}{3}\end{matrix}\right.
Whakaoti mō f
\left\{\begin{matrix}\\f=\frac{1}{3}\approx 0.333333333\text{, }&\text{unconditionally}\\f\neq 0\text{, }&x=0\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=0\text{, }&f\neq 0\\x\in \mathrm{R}\text{, }&f=\frac{1}{3}\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
f^{-1}x-3x=0
Tangohia te 3x mai i ngā taha e rua.
-3x+\frac{1}{f}x=0
Whakaraupapatia anō ngā kīanga tau.
-3xf+1x=0
Whakareatia ngā taha e rua o te whārite ki te f.
-3fx+x=0
Whakaraupapatia anō ngā kīanga tau.
\left(-3f+1\right)x=0
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(1-3f\right)x=0
He hanga arowhānui tō te whārite.
x=0
Whakawehe 0 ki te 1-3f.
\frac{1}{f}x=3x
Whakaraupapatia anō ngā kīanga tau.
1x=3xf
Tē taea kia ōrite te tāupe f ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te f.
3xf=1x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3fx=x
Whakaraupapatia anō ngā kīanga tau.
3xf=x
He hanga arowhānui tō te whārite.
\frac{3xf}{3x}=\frac{x}{3x}
Whakawehea ngā taha e rua ki te 3x.
f=\frac{x}{3x}
Mā te whakawehe ki te 3x ka wetekia te whakareanga ki te 3x.
f=\frac{1}{3}
Whakawehe x ki te 3x.
f^{-1}x-3x=0
Tangohia te 3x mai i ngā taha e rua.
-3x+\frac{1}{f}x=0
Whakaraupapatia anō ngā kīanga tau.
-3xf+1x=0
Whakareatia ngā taha e rua o te whārite ki te f.
-3fx+x=0
Whakaraupapatia anō ngā kīanga tau.
\left(-3f+1\right)x=0
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(1-3f\right)x=0
He hanga arowhānui tō te whārite.
x=0
Whakawehe 0 ki te 1-3f.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}