Tīpoka ki ngā ihirangi matua
Whakaoti mō f
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{f}x=\sqrt[3]{x+3}
Whakaraupapatia anō ngā kīanga tau.
1x=f\sqrt[3]{x+3}
Tē taea kia ōrite te tāupe f ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te f.
f\sqrt[3]{x+3}=1x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt[3]{x+3}f=x
Whakaraupapatia anō ngā kīanga tau.
\frac{\sqrt[3]{x+3}f}{\sqrt[3]{x+3}}=\frac{x}{\sqrt[3]{x+3}}
Whakawehea ngā taha e rua ki te \sqrt[3]{3+x}.
f=\frac{x}{\sqrt[3]{x+3}}
Mā te whakawehe ki te \sqrt[3]{3+x} ka wetekia te whakareanga ki te \sqrt[3]{3+x}.
f=\frac{x}{\sqrt[3]{x+3}}\text{, }f\neq 0
Tē taea kia ōrite te tāupe f ki 0.