Whakaoti mō f
f=-\frac{x}{-\sqrt{x^{2}+1}+x}
x\neq 0
Whakaoti mō x
x=\frac{f}{\sqrt{2f+1}}
f>-\frac{1}{2}\text{ and }f\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{f}x=\sqrt{x^{2}+1}-x
Whakaraupapatia anō ngā kīanga tau.
1x=f\sqrt{x^{2}+1}-xf
Tē taea kia ōrite te tāupe f ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te f.
f\sqrt{x^{2}+1}-xf=1x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
f\sqrt{x^{2}+1}-fx=x
Whakaraupapatia anō ngā kīanga tau.
\left(\sqrt{x^{2}+1}-x\right)f=x
Pahekotia ngā kīanga tau katoa e whai ana i te f.
\frac{\left(\sqrt{x^{2}+1}-x\right)f}{\sqrt{x^{2}+1}-x}=\frac{x}{\sqrt{x^{2}+1}-x}
Whakawehea ngā taha e rua ki te \sqrt{x^{2}+1}-x.
f=\frac{x}{\sqrt{x^{2}+1}-x}
Mā te whakawehe ki te \sqrt{x^{2}+1}-x ka wetekia te whakareanga ki te \sqrt{x^{2}+1}-x.
f=x\left(\sqrt{x^{2}+1}+x\right)
Whakawehe x ki te \sqrt{x^{2}+1}-x.
f=x\left(\sqrt{x^{2}+1}+x\right)\text{, }f\neq 0
Tē taea kia ōrite te tāupe f ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}