Whakaoti mō f
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}
x>0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{f}x=\frac{2x^{2}+1}{\sqrt{x}}
Whakaraupapatia anō ngā kīanga tau.
1x=fx^{-\frac{1}{2}}\left(2x^{2}+1\right)
Tē taea kia ōrite te tāupe f ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te f.
1x=2fx^{-\frac{1}{2}}x^{2}+fx^{-\frac{1}{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te fx^{-\frac{1}{2}} ki te 2x^{2}+1.
1x=2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -\frac{1}{2} me te 2 kia riro ai te \frac{3}{2}.
2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}=1x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2fx^{\frac{3}{2}}+x^{-\frac{1}{2}}f=x
Whakaraupapatia anō ngā kīanga tau.
\left(2x^{\frac{3}{2}}+x^{-\frac{1}{2}}\right)f=x
Pahekotia ngā kīanga tau katoa e whai ana i te f.
\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f=x
He hanga arowhānui tō te whārite.
\frac{\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
Whakawehea ngā taha e rua ki te 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
Mā te whakawehe ki te 2x^{\frac{3}{2}}+x^{-\frac{1}{2}} ka wetekia te whakareanga ki te 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}
Whakawehe x ki te 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}\text{, }f\neq 0
Tē taea kia ōrite te tāupe f ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}