Tīpoka ki ngā ihirangi matua
Whakaoti mō f
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{f}x=\frac{2x^{2}+1}{\sqrt{x}}
Whakaraupapatia anō ngā kīanga tau.
1x=fx^{-\frac{1}{2}}\left(2x^{2}+1\right)
Tē taea kia ōrite te tāupe f ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te f.
1x=2fx^{-\frac{1}{2}}x^{2}+fx^{-\frac{1}{2}}
Whakamahia te āhuatanga tohatoha hei whakarea te fx^{-\frac{1}{2}} ki te 2x^{2}+1.
1x=2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -\frac{1}{2} me te 2 kia riro ai te \frac{3}{2}.
2fx^{\frac{3}{2}}+fx^{-\frac{1}{2}}=1x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2fx^{\frac{3}{2}}+x^{-\frac{1}{2}}f=x
Whakaraupapatia anō ngā kīanga tau.
\left(2x^{\frac{3}{2}}+x^{-\frac{1}{2}}\right)f=x
Pahekotia ngā kīanga tau katoa e whai ana i te f.
\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f=x
He hanga arowhānui tō te whārite.
\frac{\left(2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}\right)f}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
Whakawehea ngā taha e rua ki te 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x}{2x^{\frac{3}{2}}+\frac{1}{\sqrt{x}}}
Mā te whakawehe ki te 2x^{\frac{3}{2}}+x^{-\frac{1}{2}} ka wetekia te whakareanga ki te 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}
Whakawehe x ki te 2x^{\frac{3}{2}}+x^{-\frac{1}{2}}.
f=\frac{x^{\frac{3}{2}}}{2x^{2}+1}\text{, }f\neq 0
Tē taea kia ōrite te tāupe f ki 0.