Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image
Whakaoti mō f
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\left(-\frac{b}{m}\right)fxm-gm
Whakareatia ngā taha e rua o te whārite ki te m.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bf}{m}xm-gm
Tuhia te \left(-\frac{b}{m}\right)f hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bfx}{m}m-gm
Tuhia te \frac{-bf}{m}x hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=\frac{-bfxm}{m}-gm
Tuhia te \frac{-bfx}{m}m hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(f)xm=-bfx-gm
Me whakakore tahi te m i te taurunga me te tauraro.
-bfx-gm=\frac{\mathrm{d}}{\mathrm{d}x}(f)xm
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-bfx=\frac{\mathrm{d}}{\mathrm{d}x}(f)xm+gm
Me tāpiri te gm ki ngā taha e rua.
\left(-fx\right)b=gm
He hanga arowhānui tō te whārite.
\frac{\left(-fx\right)b}{-fx}=\frac{gm}{-fx}
Whakawehea ngā taha e rua ki te -fx.
b=\frac{gm}{-fx}
Mā te whakawehe ki te -fx ka wetekia te whakareanga ki te -fx.
b=-\frac{gm}{fx}
Whakawehe gm ki te -fx.